Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[1-(4-Chlorophenyl)ethylidene]acetohydrazide

Huan-mei Guo, $^{\mathbf{a}_{\ast}}$ Qian Wu, $^{\mathbf{a}}$ Jie Yang $^{\mathbf{a}}$ and Yang-chun Liu $^{\mathbf{b}}$

^aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 15 October 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.164; data-to-parameter ratio = 16.6.

In the title compound, $C_{10}H_{11}ClN_2O$, the dihedral angle between the acetohydrazide group and the aromatic ring is 33.76 (9)°. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(8)$ loops.

Related literature

For a related structure, see: Li & Jian (2008).

Experimental

Crystal data $C_{10}H_{11}CIN_2O$ $M_r = 210.66$

Monoclinic, $P2_1/c$ *a* = 15.944 (3) Å b = 5.0061 (10) Å c = 13.950 (3) Å $\beta = 109.45 (3)^{\circ}$ $V = 1049.9 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD diffractometer 9225 measured reflections

Refinement $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.164$ S = 1.222368 reflections 143 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.93 (2)	2.02 (2)	2.9384 (18)	170.3 (18)

Symmetry code: (i) -x + 1, -y - 1, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the National Natural Science Foundation of Shandong Province (Y2008B29) and Yuandu Scholar of Weifang City.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5687).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

2368 independent reflections

1840 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.33 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.028$

refinement

 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

supplementary materials

Acta Cryst. (2010). E66, o2941 [doi:10.1107/S1600536810042546]

N'-[1-(4-Chlorophenyl)ethylidene]acetohydrazide

H. Guo, Q. Wu, J. Yang and Y. Liu

Experimental

A mixture of 4-fluorobenzophenone (0.02 mol) and acethydrazide (0.02 mol) was stirred in refluxing ethanol(30 ml) for 2 h to afford the title compound (yield 82%). Yellow bars of (I) were obtained by recrystallization from acetic ether at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances in the range 0.93–0.97Å and 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}$ of the parent atoms.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

N'-[1-(4-Chlorophenyl)ethylidene]acetohydrazide

Crystal data	
C ₁₀ H ₁₁ ClN ₂ O	F(000) = 440
$M_r = 210.66$	$D_{\rm x} = 1.333 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2368 reflections
<i>a</i> = 15.944 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 5.0061 (10) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 13.950 (3) Å	T = 293 K
$\beta = 109.45 \ (3)^{\circ}$	Bar, yellow
$V = 1049.9 (4) \text{ Å}^3$	$0.25\times0.20\times0.20~mm$
Z = 4	
Data collection	

Bruker SMART CCD diffractometer	1840 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

phi and ω scans	$h = -20 \rightarrow 20$
9225 measured reflections	$k = -6 \rightarrow 6$
2368 independent reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.164$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.22	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2368 reflections	$(\Delta/\sigma)_{max} < 0.001$
143 parameters	$\Delta \rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.05552 (4)	0.51605 (12)	0.20233 (5)	0.0784 (3)
01	0.58233 (7)	-0.3084 (2)	0.08042 (9)	0.0515 (3)
N2	0.43948 (8)	-0.2513 (3)	0.06514 (10)	0.0437 (3)
N1	0.37755 (9)	-0.1121 (3)	0.09450 (10)	0.0450 (3)
C4	0.29443 (11)	-0.1619 (3)	0.04835 (12)	0.0449 (4)
C5	0.23285 (11)	-0.0057 (3)	0.08658 (12)	0.0449 (4)
C2	0.52624 (10)	-0.1844 (3)	0.10492 (11)	0.0409 (3)
C8	0.12309 (12)	0.3099 (3)	0.15743 (15)	0.0544 (4)
C7	0.20770 (13)	0.2495 (4)	0.22141 (14)	0.0598 (5)
H7A	0.2280	0.3142	0.2877	0.072*
C6	0.26121 (11)	0.0927 (4)	0.18559 (13)	0.0544 (4)
H6A	0.3181	0.0507	0.2287	0.065*
C10	0.14651 (12)	0.0543 (4)	0.02497 (14)	0.0572 (5)
H10A	0.1251	-0.0132	-0.0408	0.069*

C1	0.55118 (11)	0.0442 (3)	0.17832 (14)	0.0517 (4)
H1B	0.6144	0.0700	0.2004	0.078*
H1C	0.5332	0.0054	0.2360	0.078*
H1D	0.5219	0.2036	0.1456	0.078*
C9	0.09182 (12)	0.2137 (4)	0.06054 (15)	0.0620 (5)
H9A	0.0344	0.2544	0.0186	0.074*
C3	0.25881 (16)	-0.3524 (5)	-0.0385 (2)	0.0663 (6)
H2A	0.4257 (13)	-0.391 (4)	0.0186 (17)	0.062 (5)*
H3A	0.197 (2)	-0.372 (5)	-0.064 (2)	0.106 (9)*
H3B	0.279 (3)	-0.503 (7)	-0.022 (3)	0.155 (16)*
H3C	0.278 (2)	-0.321 (6)	-0.094 (2)	0.115 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0715 (4)	0.0887 (5)	0.0850 (5)	0.0221 (3)	0.0396 (3)	0.0014 (3)
01	0.0511 (6)	0.0533 (6)	0.0489 (7)	0.0016 (5)	0.0151 (5)	-0.0108 (5)
N2	0.0479 (7)	0.0422 (7)	0.0401 (7)	0.0027 (6)	0.0134 (5)	-0.0058 (5)
N1	0.0475 (7)	0.0469 (7)	0.0399 (7)	0.0038 (6)	0.0137 (5)	-0.0018 (5)
C4	0.0495 (8)	0.0424 (8)	0.0417 (8)	-0.0018 (6)	0.0138 (6)	0.0016 (6)
C5	0.0462 (9)	0.0451 (8)	0.0414 (9)	-0.0024 (6)	0.0119 (7)	0.0029 (6)
C2	0.0510 (8)	0.0378 (7)	0.0325 (7)	0.0033 (6)	0.0122 (6)	0.0004 (5)
C8	0.0520 (9)	0.0554 (9)	0.0615 (11)	0.0043 (7)	0.0267 (8)	0.0037 (8)
C7	0.0601 (10)	0.0706 (11)	0.0469 (10)	0.0085 (9)	0.0154 (8)	-0.0030 (8)
C6	0.0501 (9)	0.0641 (10)	0.0442 (9)	0.0074 (8)	0.0092 (7)	-0.0016 (7)
C10	0.0466 (9)	0.0701 (11)	0.0496 (10)	-0.0019 (8)	0.0089 (7)	-0.0065 (8)
C1	0.0571 (10)	0.0488 (9)	0.0491 (10)	-0.0064 (7)	0.0175 (7)	-0.0115 (7)
C9	0.0429 (8)	0.0705 (11)	0.0663 (12)	0.0032 (8)	0.0097 (8)	0.0008 (9)
C3	0.0595 (12)	0.0661 (13)	0.0687 (14)	-0.0060 (10)	0.0154 (10)	-0.0225 (10)

Geometric parameters (Å, °)

Cl1—C8	1.7512 (17)	C7—C6	1.370 (2)
O1—C2	1.2269 (18)	С7—Н7А	0.9300
N2—C2	1.350 (2)	С6—Н6А	0.9300
N2—N1	1.3773 (17)	C10—C9	1.390 (3)
N2—H2A	0.93 (2)	C10—H10A	0.9300
N1—C4	1.290 (2)	C1—H1B	0.9600
C4—C5	1.486 (2)	C1—H1C	0.9600
C4—C3	1.497 (2)	C1—H1D	0.9600
C5—C10	1.391 (2)	С9—Н9А	0.9300
C5—C6	1.392 (2)	С3—НЗА	0.93 (3)
C2—C1	1.498 (2)	С3—Н3В	0.83 (4)
C8—C9	1.363 (3)	С3—НЗС	0.94 (3)
C8—C7	1.381 (3)		
C2—N2—N1	119.36 (13)	С7—С6—Н6А	119.1
C2—N2—H2A	116.5 (12)	С5—С6—Н6А	119.1
N1—N2—H2A	124.2 (12)	C9—C10—C5	120.84 (17)

supplementary materials

C4—N1—N2	118.22 (13)		C9—C10—H10A		119.6	
N1—C4—C5	114.25 (13)		C5-C10-H10A		119.6	
N1—C4—C3	125.23 (16)		C2—C1—H1B		109.5	
C5—C4—C3	120.50 (15)		C2—C1—H1C		109.5	
C10-C5-C6	117.66 (16)		H1B—	-C1—H1C		109.5
C10-C5-C4	121.86 (15)		С2—С	1—H1D		109.5
C6—C5—C4	120.46 (14)		H1B—	-C1—H1D		109.5
O1—C2—N2	120.14 (14)		H1C—	-C1—H1D		109.5
O1—C2—C1	121.64 (14)		С8—С	9—C10		119.41 (16)
N2—C2—C1	118.22 (14)		С8—С	9—H9A		120.3
C9—C8—C7	121.30 (16)		C10—0	С9—Н9А		120.3
C9—C8—Cl1	119.82 (14)		С4—С	3—НЗА		116.6 (17)
C7—C8—Cl1	118.88 (15)		С4—С	3—Н3В		110 (3)
C6—C7—C8	118.87 (17)		H3A—C3—H3B 1		106 (3)	
С6—С7—Н7А	120.6		C4—C3—H3C 1		115.3 (18)	
С8—С7—Н7А	120.6		Н3А—	-С3—НЗС		107 (2)
C7—C6—C5	121.89 (16)		НЗВ—СЗ—НЗС			101 (3)
Hydrogen-bond geometry (Å, °)						
D—H···A		<i>D</i> —Н]	H···A	$D \cdots A$	D—H··· A
N2—H2A…O1 ⁱ		0.93 (2)		2.02 (2)	2.9384 (18)	170.3 (18)

Symmetry codes: (i) -x+1, -y-1, -z.

Fig. 1